Bounds on Eigenvalues of a Spatial Correlation Matrix

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounds for eigenvalues of matrix polynomials

Upper and lower bounds are derived for the absolute values of the eigenvalues of a matrix polynomial (or λ-matrix). The bounds are based on norms of the coefficient matrices and involve the inverses of the leading and trailing coefficient matrices. They generalize various existing bounds for scalar polynomials and single matrices. A variety of tools are used in the derivations, including block ...

متن کامل

Three Absolute Perturbation Bounds for Matrix Eigenvalues Imply Relative Bounds

We show that three well-known perturbation bounds for matrix eigenvalues imply relative bounds: the Bauer-Fike and Hooman-Wielandt theorems for diagonalisable matrices, and Weyl's theorem for Hermitian matrices. As a consequence, relative perturbation bounds are not necessarily stronger than absolute bounds; and the conditioning of an eigenvalue in the relative sense is the same as in the absol...

متن کامل

Accurate Error Bounds for the Eigenvalues of the Kernel Matrix

The eigenvalues of the kernel matrix play an important role in a number of kernel methods, in particular, in kernel principal component analysis. It is well known that the eigenvalues of the kernel matrix converge as the number of samples tends to infinity. We derive probabilistic finite sample size bounds on the approximation error of individual eigenvalues which have the important property th...

متن کامل

Bounds on graph eigenvalues I

We improve some recent results on graph eigenvalues. In particular, we prove that if G is a graph of order n 2; maximum degree ; and girth at least 5; then

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Communications Letters

سال: 2014

ISSN: 1089-7798

DOI: 10.1109/lcomm.2014.2332993